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Trajectory surface hopping simulations of photochemical reactions are a powerful and in-

creasingly important tool to unravel complex photochemical reactivity. Within surface

hopping, electronic transitions are mimicked by stochastic hops between electronic poten-

tial surfaces. Thus, statistical sampling is an inescapable component of trajectory-surface-

hopping-based nonadiabatic molecular dynamics methods. However, the standard sam-

pling strategy inhibits computational reproducibility, limits predictability, and results in

trajectories that are overly sensitive to numerical parameters like the time step. We de-

scribe an equivalent approach to sampling electronic transitions within fewest switches

surface hopping (FSSH) in which hops are decided in terms of the cumulative probability

(FSSH-c) as opposed to usual prescription, which is in terms of the instantaneous con-

ditional probability (FSSH-i). FSSH-c is statistically equivalent to FSSH-i and can be

implemented from trivial modifications to an existing surface hopping algorithm, but has

several key advantages: i) a single trajectory is fully specified by just a handful of random

numbers, ii) all hopping decisions are independent of the time step such that convergence

behavior of individual trajectories can be explored, and iii) alternative integral-based sam-

pling schemes are enabled. In addition, we show that the conventional hopping probability

overestimates the hopping rate and propose a simple scaling correction as a fix. Finally,

we demonstrate these advantages numerically on model scattering problems.
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I. INTRODUCTION7

Mixed quantum-classical nonadiabatic molecular dynamics1–3 (NAMD) has emerged as an ef-8

ficient and powerful tool to study processes involving electronic nonadiabaticity such as photo-9

chemical reactions4, reactive scattering on metal surfaces5,6, or chemical reactions in cavities.7–9
10

Of the many approaches to NAMD reported previously, algorithms based on the trajectory sur-11

face hopping concept are especially advantageous because the independent trajectory approxima-12

tion makes them amenable to on-the-fly molecular dynamics simulations, in which the energies,13

forces, and nonadiabatic couplings required to propagate trajectories are computed at each time14

step using semiempirical or ab initio electronic structure methods. In particular, NAMD simula-15

tions powered by time-dependent density functional theory10–23 appear to strike an ideal balance16

between computational cost and accuracy of the potential energy surfaces.17

The Fewest Switches Surface Hopping (FSSH) approach to trajectory surface hopping is per-18

haps the most widely used.24 Within FSSH, the nuclear degrees of freedom are treated classically19

and the forces governing nuclear motion come from a single (usually adiabatic) potential energy20

surface. Electronic transitions are included in the form of “hops” between potential energy sur-21

faces. Intense interest in nonadiabatic dynamics in general and photochemistry in condensed sys-22

tems in particular has led to substantial progress25 towards curing FSSH’s principal pathologies,23

such as an inconsistent nuclear-electronic coherence26–29, and an unphysical dependence on the24

electronic representation30,31. In addition, surface hopping algorithms that incorporate coupled tra-25

jectories have been recently introduced,32,33 as well as algorithms that target electronic coherences26

on the same footing as electronic populations.34 Since the cost of an FSSH simulation is directly27

proportional to the number of trajectories sampled, reducing the number of trajectories required28

for a desired accuracy can have a significant impact on feasibility. The army ants algorithm, for29

instance, enables FSSH for rare events (e.g., probability of 10−6) by artificially increasing low hop-30

ping probabilities and compensating by reweighting trajectories.35 Similarly, importance sampling31

has been applied to the sampling of the initial conditions and shown to greatly reduce the number32

of independent initial conditions needed to be sampled to study the influence of temperature on33

photoabsorption cross sections.36
34

As originally proposed, hops in FSSH are decided by computing an instantaneous hopping35

probability at each time step and comparing the hopping probability to a random number.24 Within36

FSSH, the hopping probabilities are chosen such that on average, the proportion of trajectories on37
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a given potential energy surface matches the electronic population of that state. Consequently, the38

FSSH algorithm inherently requires sampling with independent trajectories. Of course, determin-39

istic approaches to simulating surface hopping trajectories could be used instead. For example, the40

ants algorithm for trajectory surface hopping—which predates FSSH—deterministically spawns41

new trajectories at specified decision points and weights the new trajectories according to the in-42

stantaneous hopping probability.35,37 A similar approach is used in full multiple spawning (FMS),43

a deterministic trajectory-based nonadiabatic molecular dynamics method spawns new trajectories44

in regions of strong vibronic coupling.38 However, such spawning algorithms can become imprac-45

tical for long simulations because the number of trajectories (and therefore the computational cost)46

grows exponentially as a function of simulation time.35 Stochastic approaches remain advanta-47

geous because they let one control the computational cost without biasing the results. For example,48

the recently proposed stochastic-selection approach to ab initio multiple spawning39 stochastically49

discards trajectory basis functions during a simulation and thereby avoids the exponential growth50

in the number of trajectories encountered in the deterministic ab initio multiple spawning.38
51

The stochastic nature of FSSH poses several obstacles to the reproducibility of simulations52

performed using different implementations because direct comparisons are only possible between53

implementations using the same classical integrator, electronic propagator, and sequence of ran-54

dom numbers. We specifically refer here to computational reproducibility, which has been defined55

as “obtaining consistent results using the same input data, computational methods, and conditions56

of analysis.”40 FSSH results must be reproduced in a statistical sense, meaning many trajecto-57

ries must be simulated and estimated properties of the distributions must be compared, which58

can require thousands to millions of trajectories depending on the desired precision. By contrast,59

with deterministic trajectory methods, independent implementations of the same method can of-60

ten generate identical results down to machine precision on just a single trajectory. An illustrative61

example is the question of whether a coin flip is fair; almost 10000 independent coin flips would62

be required to have a 95% confidence that the bias in a given coin is less than 0.01. Thus, compu-63

tational reproducibility can be enhanced by reducing or limiting the influence of stochasticity in a64

computational method.65

Similarly, numerically confirming convergence behavior of FSSH algorithms with respect to66

time step is challenging because random numbers are drawn for each time step such that changing67

the classical time step necessarily changes the hopping behavior. For this reason, convergence68

with respect to time step is investigated rarely and always in a statistical sense.41,42
69
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Here, we introduce an alternative criterion for deciding surface hops in FSSH based on the70

cumulative hopping probability, i.e., the probability of any hop occurring since the start of the71

simulation or the last hop. The cumulative viewpoint is inspired by the perturbative expansion72

of semiclassical time-dependent molecular wavefunction in powers of the nonadiabatic coupling73

by White et al43,44, in which the molecular wavefunction is expanded as an infinite series ordered74

according to the number and times of all possible surface hops. Similar expressions were used by75

others to expand the quantum-classical Liouville equation.45,46 However, the cumulative algorithm76

we propose is nonperturbative.77

In addition to significantly reducing the number random numbers needed to propagate a single78

trajectory, using the cumulative hopping probability carries two more significant advantages. First,79

it removes any dependence of surface hopping decisions on the time step so that convergence of80

single trajectories with respect to the time step can be studied numerically. Second, the cumulative81

point-of-view allows one to rewrite the results of a swarm of surface hopping trajectories as an82

integral on the unit hypercube, which is especially amenable to numerical integration techniques.83

This paper is organized as follows. In Sec. II we review the basic structure of FSSH so that84

we can introduce the FSSH-i and FSSH-c algorithms. In addition, we sketch an even sampling85

algorithm obtained from integrating the surface hopping hypercube with a quadrature. In Sec.86

III we use a python implementation to show that FSSH-c yields identical dynamics as FSSH-i.87

With this implementation, we numerically demonstrate that the convergence behavior of a single88

trajectory can be studied. We then show that the even sampling algorithm significantly reduces89

statistical noise in swarms of trajectories. Finally, we conclude in Sec. IV by discussing several90

avenues of ongoing research.91

II. FEWEST SWITCHES SURFACE HOPPING (FSSH)92

In mixed quantum-classical nonadiabatic molecular dynamics (NAMD) methods, the electronic93

subsystem is treated quantum mechanically by expanding in a few-state electronic basis and the94

nuclear subsystem is treated classically.24 We write the vector of nuclear positions as R(t). The95

electronic wavefunction is typically expanded in a nuclear-position-dependent basis as96

|Ψ(t)〉 ≡
∑

n

cn(t)|Φn; R(t)〉 (1)
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where cn(t) are time-dependent expansion coefficients, and |Φn; R(t)〉 is the n-th many-electron97

state which depends parametrically on the nuclear position. Alternatively, the electronic density98

operator99

σ̂(t) ≡
∑
nm

σnm(t)|Φn; R(t)〉〈Φm; R(t)| (2)

can also be used directly. The many-electron states are often chosen to be adiabatic states, i.e.,100

states that satisfy101

ĤR|Φn; R〉 = En(R)|Φn; R〉, (3)

where ĤR is the electronic Hamiltonian with nuclei fixed at positions R and En(R) are potential102

energy surfaces, but other choices, including diabatic states are also permissible.103

The expansion coefficients are propagated according to the time-dependent Schrödinger equa-104

tion with105

ċ(t) = −i (H(t) − iW(t)) c(t) = −iH̄(t)c(t) (4)

or106

σ̇(t) = −i[H̄,σ(t)], (5)

where H̄ = H(t)− iW(t) and the elements of the matrix H (the electronic Hamiltonian) and W (the

nonadiabatic coupling) are

Hnm(t) = 〈Φn; R(t)|ĤR(t)|Φm; R(t)〉 (6)

Wnm(t) = 〈Φn; R(t)|
∂

∂t
|Φm; R(t)〉 = τnm · Ṙ. (7)

In the previous equation,107

τnm ≡ 〈Φn; R(t)|∇RΦm; R(t)〉 (8)

is the first-order derivative coupling vector and Ṙ is the nuclear velocity.108

The defining characteristics of all surface hopping methods are that i) at all times during a tra-109

jectory the classical nuclei feel forces corresponding to a single potential energy surface referred110

to as the active surface or active state and ii) electronic transitions are mimicked through stochas-111

tic “hops” between different electronic states and hence different potential energy surfaces.24 In112

particular, the FSSH variant is defined by choosing the rate of electronic transitions such that the113

number of hops is minimized and for an ensemble of independent trajectories—referred to as a114

swarm—the proportion of trajectories on any given state matches the electronic population of that115
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state on average. In other words, the rate of electronic transitions is chosen such that116

〈Nk〉

Ntraj
→ |ck|

2, (9)

where 〈Nk〉 is the average number of trajectories in a swarm of Ntraj independent trajectories with117

active state k.118

After a hop has been initiated, regardless of the criterion used to decide on a hop, the kinetic119

energy of the nuclei is adjusted to conserve total energy by scaling the nuclear momentum in the120

direction of the derivative coupling, τ. If there is insufficient nuclear kinetic energy parallel to121

the direction of the derivative coupling, then the hop is aborted. This is referred to as a frustrated122

hop. In our implementation, no additional action is taken for a frustrated hop (i.e., the trajectory123

continues with no momentum reversal).124

A. FSSH with instantaneous probabilities (FSSH-i)125

According to the original prescription, hops are decided in each time interval from t to t + ∆t126

by computing the probability of hopping from the active state k to another state n,127

pk→n(t, t + ∆t) = gk→n(t)∆t, (10)

where128

gk→n(t) = σnk(t)H̄kn(t) − H̄nk(t)σkn(t) (11)

is the instantaneous hopping probability and ∆t is the time step. In practice, a uniform random129

number η ∈ U(0, 1) is drawn and a hop is initiated if η < pk→n. Thus, the total number of random130

numbers drawn over the course of a trajectory is Nsteps, a purely numerical parameter. We refer to131

this scheme as FSSH with instantaneous probabilities (FSSH-i) and it is depicted in Fig. 1.132

We show in this paper that Eq. (10) overestimates the hopping rate when pk→n(t, t+∆t) becomes133

large. To illustrate why Eq. (10) overestimates the actual hopping probability, consider a time134

interval (t, t + ∆t) for which gk→n(t)∆t = 1
2 and assume gk→n is constant in the time interval. This135

straightforwardly leads to an overall branching probability136

hop prob. ∈ (t, t + ∆t)→
1
2
,

i.e., half of all trajectories should hop in the time interval (t, t + ∆t). Now consider the branching137

probability if two half steps were performed such that the hopping probability in each step becomes138

6

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
24

37
2



0

1

2

1.5 2 2.5

(1
0
-3
a.
u
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FSSH-i FSSH-c

1→
2

g

P
1

FIG. 1. Instantaneous (left) and cumulative (right) hopping probabilities for a scattering simulation on

Tully’s simple avoided crossing model. In FSSH-i (left), hopping decisions are made based on integrated

instantaneous hopping probabilities such as the indicated region. In FSSH-c (right), hops are initiated when

the cumulative probability crosses a randomly chosen threshold signified by the horizontal dashed line.

1
4 , but each step has an independent hopping probability. The total probability of the trajectory139

hopping in (t, t + ∆t) is thus140

hop prob. ∈ (t, t + ∆t)→
1
4

+

(
1 −

1
4

)
1
4

= 0.4375,

which is the probability of a hop in the first step plus the probability of no hop in the first step but a141

hop in the second step. Hence, reducing the time step drastically reduces the branching probability142

in the (t, t + ∆t) time interval, even though gk→n(t) was assumed to be constant. We can generalize143

this procedure by dividing the time interval into ` equal length segments, writing the probability144

of hopping in terms of the probability of no hop occurring in each time interval, (1 − gk→n∆t/`)`,145

and evaluating the limit as ` goes to infinity,146

hop prob. ∈ (t, t + ∆t)→ 1 − lim
`→∞

(
1 −

gk→n∆t
`

)`
= 1 − e−gk→n∆t,

where we have used the identity lim`→∞

(
1 + x

`

)`
= ex. Note that Eq. (10) is the first-order result147

of the previous equation. Therefore, we propose a simple scaling correction to Eq. (10),148

pk→n(t, t + ∆t) = s(gk∆t)gk→n(t)∆t, (12)

where149

s(x) =
1 − e−x

x
, (13)

150

gk =
∑
n,k

H(gk→n(t)) (14)
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is the instantaneous probability of any hop occurring to any state and H is the Heaviside function151

that ensures that a hop to state n only occurs when the population of state n is increasing. Inter-152

estingly, this scale guarantees the hopping probabilities are less than 1, which is a requirement for153

proper probabilities violated by Eq. (10). In addition, Eq. (12) correctly gives the same overall154

hopping probability whether using one step or two half steps. Using the same example as above155

where gk∆t = 1
2 , the probability of hopping over two half steps is (1 − e−1/4) + e−1/4(1 − e−1/4) =156

1 − e−1/2, which is identical to the single step hopping probability. For very small arguments,157

s(x) ≈ 1, and the scaled result is nearly the same as Eq. (10). However, s(x) decreases rapidly as x158

gets larger. For example, s(0.02) ≈ 0.99, s(0.1034) ≈ 0.95, and s(0.215) ≈ 0.9, meaning when Eq.159

(10) indicates a 22% probability of hopping, s(x) reduces that by a significant 10%. In situations160

where Eq. (10) guarantees a hop (i.e., the probability is equal to 1), s(x) reduces it to a 63% prob-161

ability. To avoid a problematic division by (near) zero, we evaluate s(x) with a fourth-order Taylor162

series when |x| < 10−3. Trajectories using this scaled probability are referred to as FSSH-i with163

Poisson probabilities because the probabilities follow a Poisson process and are denoted FSSH-ip.164

B. FSSH with cumulative probabilities (FSSH-c)165

Establishing the cumulative approach to FSSH starts with the recognition that pk→n is formally166

the conditional probability that there is a hop in the time window (t, t + ∆t) given that there was167

no hop in the time window (t0, t), where t0 is a reference time such as the start of the simulation168

or the time of the most recent hop. The cumulative probability of a hop occurring since the169

reference time, Pk(t0, t), is a more convenient quantity than pk→n because pk→n depends explicitly170

on a numerical parameter, the time step, whereas Pk(t0, t) depends only on a physical parameter.171

To run surface hopping simulations based on the cumulative hopping probability, at the start of172

a simulation we draw a uniform random number η ∈ U(0, 1) and hops occur at times when the173

cumulative probability crosses the random number,174

Pk(t0, thop) = η. (15)

Pk(t0, t) is propagated in time according to175

Pk(t0, t + ∆t) = Pk(t0, t) + (1 − Pk(t0, t)) (1 − e−gk∆t). (16)

See the Appendix for a derivation of Eqs. (16-14). We emphasize that Eq. (12) is a special case of176

Eq. (16) when t0 = t, providing further evidence that Eq. (12) is the correct hopping probability to177
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use. One random number is drawn and one cumulative probability is integrated irrespective of the178

number of electronic states. When a hop is indicated by Eq. (15), then the target state for hopping,179

k′, is chosen randomly according to the instantaneous hopping probabilities, gk→n(t). Note, for180

two-state models, this step can be ignored. Next, the cumulative probability, Pk, is reset to zero181

and a new random number is drawn. The cumulative probabilities are reset also in the case of182

frustrated hops.183

The total number of random numbers drawn over the course of a trajectory is thus min(2,Nstates−184

1)(Nhops + 1), which is importantly independent of any purely numerical parameters. We refer to185

this scheme as FSSH with cumulative probabilities (FSSH-c) and it is compared schematically to186

FSSH-i in Fig. 1.187

C. Even Sampling FSSH (ES-FSSH)188

FSSH-c, introduced in the previous section, remains a fully stochastic algorithm to simulate189

nonadiabatic dynamics through FSSH. In this section, we introduce a semistochastic algorithm for190

FSSH, called even sampling FSSH (ES-FSSH) that follows directly from the FSSH-c framework.191

In short, rather than randomly choosing a set of {η} (and thus the hopping times) for each trajectory,192

a swarm of trajectories with predetermined values of {η} is initiated.193

We motivate the discussion of ES-FSSH by writing an expectation value over a swarm of FSSH-194

c simulations with identical initial conditions, 〈A〉, as the integral expression195

〈A〉 =

∫ 1

0
dp1

∫ 1

0
dp2 . . . × A(p1, p2, . . .), (17)

where A(p1, p2, . . .) is the result obtained from a simulation with {η} = {p1, p2, . . .}. In this context,

FSSH-c can be seen as a Monte Carlo integration of Eq. (17). The infinitely nested integral above

can be tamed by defining reduced expectation operators,

Ak(p1, . . . , pk) =

∫ 1

0
dpk+1

∫ 1

0
dpk+2 . . .×

A(p1, . . . , pk, pk+1, . . .) (18)

9

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
24

37
2



and rewriting Eq. (17) as

〈A〉 =

∫
A1(p1)dp1 (19a)

=

"
A2(p1, p2)dp1dp2 (19b)

=

$
A3(p1, p2, p3)dp1dp2dp3. (19c)

In essence, ES-FSSH directly computes the expectation value by integrating (19) with an integra-

tion quadrature while integrating Ak with a Monte Carlo algorithm, i.e.,

〈A〉 ≈
∑

i

wiA1(pi) (20a)

≈
∑

i, j

wiw jA2(pi, p j) (20b)

≈
∑
i, j,k

wiw jwkA3(pi, p j, pk), (20c)

where {(wi, pi)} are the weights and nodes of an integration rule.196

With identical initial conditions, any two trajectories will be identical up until the first hop at197

which they differ and thus running them as independent trajectories is computationally wasteful. In198

our implementation, a single trajectory is launched and new trajectories are “spawned” whenever199

a hopping threshold is crossed. In this way, only the unique portion of trajectories are propagated.200

For Nstates > 2, one new trajectory is spawned for each potential target state and the newly spawned201

trajectories are weighted by the instantaneous probability of hopping.202

ES-FSSH is conceptually similar to the accelerated semiclassical Monte Carlo (A-SCMC)203

method44, in which for a given set of initial conditions the molecular wavefunction is expanded204

in terms of an infinite integral over the number and times of hops. The wavefunction for a finite205

number of hops was built by restarting previously run trajectories with additional hops. For ex-206

ample, A-SCMC is initiated with a single trajectory with no hops, then a 1D spline is generated207

for all the wavefunction parameters as a function of time, and finally new trajectories are sampled208

from the 1D splined parameters. In contrast to A-SCMC, ES-FSSH does not require precomputing209

any trajectories. For example, A-SCMC requires a complete zero-hop trajectory in order to sam-210

ple single-hop trajectories, whereas ES-FSSH does not. Therefore, ES-FSSH is compatible with a211

completely on-the-fly approach. Similarly, ES-FSSH resembles full multiple spawning (FMS)38 in212

that new trajectories are initiated as needed by spawning from an active trajectory. Both methods213

reduce the computational cost by initiating a single trajectory and spawning new trajectories only214
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as needed. They differ in that the collection of ES-FSSH trajectories approximates a swarm of in-215

dependent trajectories whereas all FMS trajectories are used to expand a single nuclear-electronic216

time-dependent wavefunction. In addition, with ES-FSSH the total number of trajectories is di-217

rectly specified by the choice of the quadrature whereas the total number of trajectories is specified218

indirectly in FMS by a spawning threshold that can lead to exponential growth in the number of219

trajectories.220

III. RESULTS221

All of the above algorithms were implemented in mudslide47, an open source python package222

for nonadiabatic molecular dynamics. All results use mudslide version 0.9, which is released under223

the MIT open source license. In mudslide, the classical nuclear equation of motion is propagated224

using the velocity Verlet algorithm and the quantum electronic problem is propagated as a density225

matrix by constructing the time-evolution operator using a matrix exponential of H̄. All surface226

hopping simulations were performed in the adiabatic representation.227

For concreteness, we focus on results from two previously published models, Tully’s simple228

avoided crossing model24 and Prezhdo’s superexchange model.30 We argue that these two models229

are sufficient, because our aim is to show that FSSH-c is identical to FSSH-i, not to survey the230

performance of FSSH.231

Tully’s simple avoided crossing. The simple avoided crossing model is a single-particle two-232

state model designed to mimic a scattering event in which the particle has mass 2000 a.u. and the233

diabatic Hamiltonian,234

H(x) =

V11(x) V12(x)

V21(x) V22(x)

 , (21)

is defined through

V11(x) = sgn(x)A
(
1 − e−B|x|

)
, (22a)

V22(x) = −V11(x), (22b)

V12(x) = V21(x) = Ce−Dx2
, (22c)

where sgn(x) is the sign function that returns ±1, A = 0.01, B = 1.6, C = 0.005, and D = 1.0, all235

in atomic units. See Fig. 2a for a depiction of the potential energy surfaces of the simple avoided236

crossing model.237
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V22

V33

b)
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FIG. 2. Nonadiabatic models used in this paper. a) Tully’s simple avoided crossing model.24 b) Prezhdo’s

super exchange model (note: each energy has been shifted down by 0.0075 a.u. to put it in the same scale).30

Prezhdo’s superexchange. The superexchange model is a single-particle three-state model de-238

signed to mimic mediated electronic processes (i.e., superexchange) in which the particle has mass239

2000 a.u. and the diabatic Hamiltonian,240

H(x) =


V11(x) V12(x) 0

V21(x) V22(x) V23(x)

0 V32(x) V33(x)

 , (23)

is defined through

V11(x) = 0, (24a)

V22(x) = 2A, (24b)

V33(x) = A, (24c)

V12(x) = V21(x) = Be−Dx2
, (24d)

V23(x) = V32(x) = Ce−Dx2
, (24e)

where A = 0.005, B = 0.001, C = 0.01, and D = 0.5, all in atomic units. See Fig. 2b for a241

depiction of the potential energy surfaces of the simple avoided crossing model.242

A. FSSH-i and FSSH-c are equivalent243

We start by demonstrating numerically that FSSH-i and FSSH-c reproduce the same dynamics.244

However, the equivalence of FSSH-i and FSSH-c can only be established in the statistical sense,245

since direct comparisons between trajectories is not possible, i.e., even with the same sequence of246

random numbers, FSSH-i and FSSH-c trajectories will be distinct.247
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FIG. 3. Transmission probabilities from scattering simulations using FSSH-c (red, open) and FSSH-i (blue,

filled) on a) Tully’s simple avoided crossing model24 and b) Prezhdo’s super exchange model.30 Averaged

results computed from 105 independent trajectories.

For each diabatic model and for both algorithms, we simulated the branching ratio of the scat-248

tering event (i.e., the probability of ending the simulation on each electronic surface) as a function249

of the initial momentum, k0. For each set of simulations, trajectories were initiated with initial250

position x0 = −10 a.u. and propagated with time step ∆t = 15 a.u.
k0
× a.u. Statistical properties were251

computed using 105 trajectories for both FSSH-c and FSSH-i. Fig. 3 shows that results simulated252

using FSSH-i and FSSH-c are visually indistinguishable.253

Next, we quantify the equivalence of the two approaches by modeling the final result of each254

trajectory as a Bernoulli process where the two possible outcomes are ending on the ground state255

(with associated probability p) or on the excited state (with probability 1 − p). According to the256

central limit theorem, with sufficient sampling, the probability distribution for the true branching257

probability for a given set of initial conditions will follow a normal distribution,258

P(p) =
1

σp
√

2π
exp

−1
2

(
p − p̄
σp

)2 , (25)

where p̄ is the observed mean branching probability, σp =
√

p̄(1 − p̄)/Ns is the standard error of259

the mean,48 and Ns is the number of samples (i.e., independent trajectories). Applying this model260

for results from FSSH-i and FSSH-c, we can estimate the probability that the true means computed261

from FSSH-i and FSSH-c differ by less than a tolerance, r, as262

E(r) =
1
2

[
erf

(
∆p̄ + r
√

2σ′

)
− erf

(
∆p̄ − r
√

2σ′

)]
, (26)

where erf(x) is the error function, ∆ p̄ is the difference between the observed branching probabil-263

ities for FSSH-i and FSSH-c, and σ′ =

√
σ2

FSSH-i + σ2
FSSH-c is the combined standard error of the264

mean for FSSH-i and FSSH-c.265
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Using Eq. (26), we find that branching probabilities computed with FSSH-i and FSSH-c differ266

by less than 0.011 at 99% confidence for all initial momenta in Fig. 3. Consequently, we confirm267

that FSSH-i and FSSH-c produce statistically identical results. In other words, any swarm FSSH-c268

trajectories will exhibit the exact same statistical properties (e.g., mean and variance) as a swarm269

of FSSH-i trajectories, regardless of the model or number of trajectories in the swarms.270

An important caveat is that FSSH-i and FSSH-c produce identical results for sufficiently small271

time steps. For larger time steps, we found a small but statistically significant difference between272

FSSH-i and FSSH-c when the hopping probability becomes large. Figure 4a shows the results273

of sets of 105 scattering simulations with the same parameters as in Fig. 3, except with a time274

step of ∆t = 120 a.u.
k0
× a.u, which is 8 times larger than that used in Fig. 3. We see that when the275

initial momentum becomes large (and the probability of ending the simulation on the excited state276

increases), there is a small but systematic difference between FSSH-c and FSSH-i, with FSSH-i277

being more likely to end on the excited state. Since the only difference between the two algorithms278

is in the hopping decision, we conclude that the difference between FSSH-i and FSSH-c in Fig.279

4 is due to overly aggressive hopping in the FSSH-i algorithm. We verified by investigating the280

convergence with respect to time step for a set of simulations with initial momentum k0 = 30 a.u.281

and averaged over 106 trajectories, and further comparing against FSSH-ip (FSSH-i with scaled282

Poisson probabilities). The results are shown in Fig. 4b, from which we see that FSSH-c and283

FSSH-ip have similar convergence rates and that FSSH-i requires a significantly shorter time step284

than FSSH-c for the same accuracy; FSSH-c and FSSH-ip are essentially converged by ∆t = 4 a.u.285

(i.e., the difference between the result at ∆t = 4 a.u. is within one standard deviation of the result286

at ∆t = 1
4 a.u.), whereas FSSH-i requires a time step of ∆t = 1

2 a.u. for the result to be within one287

standard deviation of the result at ∆t = 1
4 a.u. For instance, the FSSH-i result with ∆t = 1 a.u. is288

more than 4 standard deviations away from the result with ∆t = 1
4 a.u.289

B. FSSH-c uncovers convergence behavior290

In this section, we demonstrate the key advantage of FSSH-c: it enables detailed investigations291

of the convergence behavior of a single trajectory with respect to any other numerical parameter292

such as the time step, integration method, or thresholds related to construction of the potential293

energy surfaces. This is not possible using FSSH-i because changing the time step will neces-294

sarily change the sequence of random numbers drawn for a given physical time interval. Hence,295
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FIG. 4. a) Transmission probabilities from scattering simulations on Tully’s simple avoided crossing

model24 using FSSH-c (red, open) and FSSH-i (blue, filled) with ∆t = 120 a.u.
k0
× a.u, which is 8 times larger

than time steps used in Fig. 3. b) Convergence of the probability of transmission on the ground state with

initial momentum k0 = 30 a.u. as a function of time step. Averaged results computed from 105 independent

trajectories. Vertical bars represent the 95% confidence interval estimated from ±1.96
√

p(1 − p)/Ns where

p is the observed ground state transmission probability and Ns = 106.

convergence studies for single surface hopping trajectories have not been reported previously.296

The convergence of the final position, momentum, energy, and density matrix as well as the297

hopping times of a single trajectory with respect to time step is examined in Fig. 5. The trajectory298

uses Tully’s simple avoided crossing model, with initial position x0 = −10 a.u., initial momentum299

k0 = 10.0 a.u., and initial density matrix σnm(0) = δ0nδ0m. Trajectories were run for a total time300

of 4000 a.u. As reference, we compare to a trajectory with ∆t = 2−14 a.u. ≈ 6.1 × 10−5 a.u. In301

the studied trajectories, two hops are observed such that three random numbers are generated with302

values of {0.0291974618580323, 0.1800264840275190, 0.2221643371943814}.303

From Fig. 5, we see that all final parameters converge monotonically and that a parts-per-304

thousand error is achieved for most final properties at ∆t = 1 a.u. Notably, most properties con-305

verge much slower than expected analytically. For instance, the analytical global error in the306

position for the velocity Verlet algorithm scales as ∆t2; however, a log-log fit of the results in Fig.307

5a show a scaling of ∆t0.98. We attribute this slow convergence to the result of surface hops. The308

error in the hopping time is linear in the time step, because hops are only considered at whole309

time steps. Because the potential energy surface and momentum change suddenly upon surface310

hop, a linear error in the hopping time translates into a linear error in all other properties. We cor-311

roborated this hypothesis by studying the convergence of a trajectory with no hops and find that312

the position, energy, momentum, and magnitudes of all elements of the density matrix converge313

quadratically or faster.314
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FIG. 5. Convergence of a single surface hopping trajectory with respect to time step using FSSH-c. Relative

errors of the final a) position (x f ), momentum (k f ), and total energy (E f ); b) time of first surface hop (t0)

and second surface hop (t1); c) diagonal elements of the electronic density matrix (σ00(t f ) and σ11(t f )); d)

off-diagonal elements of the electronic density matrix in polar form, σ01(t f ) = ρeiφ.

C. ES-FSSH reduces statistical error but biases the results315

In this section, we compare statistical convergence of FSSH-c with several closely related even316

sampling FSSH (ES-FSSH) methods. In all cases, we use the trapezoid rule to integrate Eq. (19).317

We also tested integration based on Simpson’s rule but found no systematic difference. See the318

supplementary material for results using Simpson’s rule integration.49 We further introduce the319

ESn family of even sampling algorithms in which an n-dimensional quadrature is used to integrate320

An in Eq. (19). We denote ESn(w,m) algorithm as the even sampling algorithm with w quadra-321

ture points in each dimension integrating An and m Monte Carlo samples for each value of An.322

ESn(w, m) thus uses mwn trajectories to approximate 〈A〉. For instance, ES1(10,5) approximates323

Eq. (19) by integrating A1(p) with a 10-point midpoint integration rule where each value of A1(p)324

is computed by averaging across 5 independent trajectories.325

Figure 6 compares the expected means and 95% confidence intervals obtained from FSSH-c,326

ES1, ES2, and ES3 with different values of w and m for a scattering simulation using Tully’s327

simple avoided crossing with initial position x0 = −10 a.u., initial momentum k0 = 10 a.u., and328

initial density matrix σnm(0) = δ0nδ0m. A time step of ∆t = 1.0 a.u. was used. The expected mean329
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FIG. 6. Comparison of statistical convergence of a) FSSH-c and even sampling algorithms b) ES1, c) ES2,

and d) ES3 on Tully’s simple avoided crossing model. Points signify the mean and vertical bars the 95% con-

fidence interval of a set of trajectories. For ES1, values of w = 10, 20, 50, 100, 200, 500, 1000 were used. For

ES2, values of w = 10, 20, 30, 40, 50 were used. For ES3, values of w = 3, 4, 5, 7, 8, 9, 10, 15, 20, 25, 30, 35

were used. The horizontal dashed line shows the mean obtained by averaging 106 trajectories. Computa-

tional savings from reusing large portions of trajectories in ESn algorithms are not include in this plot.

and confidence intervals for FSSH-c were obtained by bootstrap sampling on a collection of 106
330

independent trajectories, while the expected mean and confidence intervals for ESn were obtained331

by repeating the ESn simulation 100 times.332

As expected from a Monte Carlo integration, FSSH-c is unbiased but relatively slow to con-333

verge; the mean branching probability, 0.843, is numerically identical to the mean computed using334

106 samples, but the range of the 95% confidence interval scales as N−0.49
s . The ESn algorithms,335

on the other hand, effectively trade bias for faster statistical convergence. Furthermore, we find336

that increasing the value of m, i.e., the number of Monte Carlo samples, reduces the range of the337

confidence interval but does not change the expected mean. For this reason, increased sampling338

with m is only beneficial in the ES1 scheme, where the bias is small but the statistical noise is339

significant. For concreteness, consider the ES2 results shown in Fig. 6c. The branching probabil-340

ity computed using ES2(10,1)—which spawns 100 trajectories in total—has a mean of 0.875 with341

a 95% confidence interval 0.855–0.880 and root-mean-square-error (RSME) of 0.033, compared342

to a mean of 0.843 with a 95% confidence interval 0.770–0.910 and RMSE of 0.037 obtained343

using FSSH-c with 100 trajectories. Therefore, a “typical” result using ES2(10,1) is closer to the344

converged result than a “typical” result computed with 100 FSSH-c trajectories, even though the345

average result from a large number of repeated simulations with ES2(10,1) will not converge to346
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FIG. 7. Comparison of root-mean-square-error (RMSE) of FSSH-c and even sampling algorithms as a

function of a) the number of trajectories and b) the wall time required. The solid line shows the analytical

RMSE for independent FSSH-c trajectories and points show the observed numerical results for all methods

presented in Fig. 6. ES1 uses m = 5, while ES2 and ES3 use m = 1 Monte Carlo samples. RMSE for

FSSH-c estimated from bootstrap sampling, and by 100 repeated simulations for ESn.

the same limit as a large number of FSSH-c trajectories. No significant benefit is gained from the347

ES2(10,5) scheme, which reduces the RMSE only to 0.032. On the other hand, when going from348

ES1(50,1) to ES1(50,10), the RMSE is reduced from 0.040 to 0.014 while the computational time349

increases by a factor of 9.350

A more direct comparison of ES-FSSH with FSSH-c is shown in Fig. 7 in which we compare351

the expected error in terms of the RMSE of a set of FSSH-c or ESn simulations as a function of the352

number of trajectories or the wall time required for the simulations. We restrict our attention in Fig.353

7 to swarms with fewer than 500 trajectories to better reflect the most common use cases of FSSH354

with ab initio potentials, and we use m = 5 for ES1 and m = 1 for ES2 and ES3. The RMSE results355

are obtained from bootstrap sampling for FSSH-c and from 100 repeated simulations for ESn. In356

Fig. 7a we see that ESn is competitive with FSSH-c on a per trajectory comparison, with some ESn357

algorithms outperforming FSSH-c and a few widely underperforming. ES1 in particular, reduces358

the number of trajectories needed for a given accuracy by factors of 1.7, 1.5, and 1.8 for w = 20,359

50, and 100, respectively. However, the comparison in terms of number of trajectories neglects the360

significant computational savings gained by only simulating the unique portions of trajectories.361

Fig. 7b shows the same results but as a function of the wall time required for the simulations.362

Here, we see that even the worst performing ESn algorithms require approximately a quarter as363

much wall time to achieve the same RMSE as FSSH-c, while top performing ESn algorithms364

(especially ES3) achieve accuracies which could only be attained from tens of thousands of FSSH-365

c trajectories at a small fraction of the cost.366

18

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
24

37
2



0.0

0.5

1.0

S0

a)

b
ra
n
c
h
in
g

ref.
ES2(10,1)
ES2(30,1)
FSSH-c

S1

b)

0.0

0.1

0.2

0.0 10.0 20.0 30.0

S0

c)

|e
rr
o
r|

momentum (a.u.)

0.0 10.0 20.0 30.0

S1

d)

momentum (a.u.)

FIG. 8. Comparison of ES2(10,1), ES2(30,1), and 100 FSSH-c trajectories on Tully’s simple avoided

crossing model. Reference results are taken from the 105 trajectories shown in Fig. 3. a) Probability of

remaining on the ground electronic state and c) the error relative to converged results. b) Probability of

transitioning to the excited electronic state and d) the error relative to converged results.

To test whether the performance of ES-FSSH generalizes beyond the single momentum in-367

vestigated in Fig. 6, we compute the branching probabilities as a function of initial momentum,368

k0, using ES2(10,1), ES2(30,1), and 100 FSSH-c trajectories. The results are collected in Fig. 8369

and compared to the reference results obtained in Fig. 3. All other simulation parameters are the370

same for the results shown in Fig. 3, i.e., x0 = −10 a.u., ∆t = 15 a.u.
k0
× a.u. In Fig. 8, we see371

that all 3 methods closely track the reference results, but that 100 FSSH-c trajectories show the372

largest maximum error and are notably nonmonotonic, whereas both sets of ES2 results recover373

the monotonic behavior of the reference result. In addition, the ES2(30,1) results are closest to the374

reference results at all momenta.375

We conclude this section by noting that electronic state branching probabilities for this model376

are likely a “worst case” model for the ESn because the branching probability is directly related to377

the number of hops and ESn treats the n-th hop differently than the n+1 hop. For example, in ES2,378

the first two hops are included in the quadrature while the third is recovered through Monte Carlo379

sampling of A2. However, for many applications of FSSH in chemistry, the final electronic state is380

known and FSSH is used to estimate not how many hops will occur but when and how they will381

occur. For example, in photodeactivation simulations, such as the deactivation of photoexcited382

thymine,21 nearly every trajectory undergoes the same number and sequence of hops.383
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IV. CONCLUSIONS384

Here, we introduce a cumulative approach to fewest switches surface hopping (FSSH-c) in385

which surface hops are initiated when the cumulative hopping probability crosses a random num-386

ber, instead of the conventional prescription in which hops occur when the instantaneous con-387

ditional probability is greater than a random number (FSSH-i). Importantly, FSSH-c produces388

statistically identical results as the conventional FSSH algorithm, and is thus an interchangeable389

replacement. As a byproduct, we show that FSSH-i overestimates the hopping probability when390

the instantaneous probability becomes large and propose a simple scaling fix that improves con-391

vergence with respect to time step. FSSH-c shares the same algorithmic structure as FSSH-i, and392

requires only a single additional floating point scalar variable to be retained between time steps—393

the cumulative hopping probability. Existing FSSH-i implementations can be converted to FSSH-c394

implementations with trivial modification of existing routines.395

The key feature of FSSH-c is that surface hops are independent of numerical parameters such396

as the time step. By removing the dependence of surface hops on the time step, several new397

possibilities are opened up, two of which are explored here. First, the convergence behavior of398

single trajectories with respect to time step can be studied numerically. Our results indicate that399

the leading error in surface hopping simulations appears to scale linearly with time step, whereas a400

quadratic global error is expected analytically for the velocity Verlet method. The loss of accuracy401

in the surface hopping simulations shown here likely result from the choice to only allow hops to402

occur at the discrete times dictated by time step. Therefore, we conclude that algorithms that allow403

surface hops to occur at a continuous time within a time step hold great promise for improving the404

numerical accuracy of surface hopping simulations.405

Second, FSSH-c exposes an alternative semistochastic integration technique for surface hop-406

ping simulations which accelerates convergence at the expense of bias, that we call even sampling407

FSSH (ES-FSSH). In particular, we introduced the ESn family of ES-FSSH algorithms which in-408

tegrate the first n hops in a swarm of simulations with an integration quadrature and all further409

hops with a Monte Carlo integration. For low numbers of trajectories (≈ 100), ESn appears advan-410

tageous because the bias introduced by the quadrature is significantly smaller than the statistical411

variance of the Monte Carlo approach. We emphasize that the example shown above is likely a412

worst-case scenario for ESn. In contrast to similar algorithms to approximate swarms of FSSH413

trajectories, ESn is fully compatible with on-the-fly dynamics44 and does not require manual se-414
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lection of coupling thresholds.35
415

Finally, FSSH-c has significant advantages over FSSH-i in terms of reproducibility and com-416

parability of different implementations. For example, directly comparing two different FSSH-i417

implementations requires using identical random number generators and time steps at the least,418

meaning that algorithms implemented in different languages (with different random number li-419

braries) may be impossible to directly compare. In this paper, we needed 105 trajectories to have a420

99% confidence that branching ratios computed with FSSH-i and FSSH-c agreed to within 0.011.421

Because of the slow convergence of Monte Carlo integration, we estimate that approximately 107
422

trajectories would be required to tighten the window of agreement to 0.001. By contrast, two im-423

plementations of FSSH-c could be compared to machine precision with just a single trajectory.424

Thus, FSSH-c significantly reduces the effort required for computational reproduction. Further-425

more, since hops only depend on physical characteristics of the trajectories, they should be much426

less sensitive to details of the integration than in FSSH-i, meaning direct comparison is simple427

even between methods that use different integration schemes, such as higher-order symplectic428

integrators50 or adaptive- or multiple-time stepping.51
429

As our focus here is to show the myriad advantages of working in the cumulative framework,430

we defer more detailed studies of the convergence and stability of propagation algorithms and of431

the even sampling surface hopping algorithm to future publications. A plethora of extensions can432

be envisioned. We briefly mention only a few. Surface hopping algorithms that allow surface433

hops to occur on the interior of time steps have been proposed52 and can now be systematically434

evaluated. Different integration quadratures in ES-FSSH could be investigated, including sparse435

Smolyak grids41,53,54 and adaptive integration schemes.55 In particular, we imagine that integration436

quadratures for even sampling could be matched to the chemical process (e.g., excited-state decay437

vs intersystem crossing) or specially designed to capture rare events without specifying in advance438

additional numerical parameters.35,56 Although we focused on the hopping probability in FSSH,439

the same approach is applicable to any random process in related algorithms, such as the collapse440

or reset probabilities in Augmented-FSSH28,52,57 or tunneling events in classical trajectories.58 All441

of these directions are under investigation on our group.442

FSSH-c has significant advantages over FSSH-i, no discernible disadvantages, and a trivial443

implementation. Therefore, we recommend its adoption as default in all FSSH implementations.444
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SUPPLEMENTARY MATERIALS445

See the supplementary materials for even sampling fewest switches surface hopping results446

integrated using Simpson’s rule.447
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Appendix: Propagation of Cumulative Probability456

In this section, we derive the propagation of the cumulative probability of hopping out of state457

k, Pk(t0, t), which represents the total probability of a single hop occurring between t0 and t. For458

convenience, however, we work with the probability of finding no hops in the interval, P̄k(t0, t) ≡459

1 − Pk(t0, t) for the duration of the derivation and rewrite the final result in terms of Pk(t0, t). Our460

implementation propagates Pk(t0, t). We start by writing the infinitesimal change as461

P̄k(t0, t + dt) = P̄k(t0, t) (1 −Gk(t)) (A.1)

where the term on the right side represents the probability of there being no hop in the interval462

(t0, t) and no hop in (t, t + dt), and463

Gk(t) = 1 −
∏
n,k

(1 − H(gk→n(t))dt) (A.2)

is the total probability of a hop to any state in the time interval. In the previous equation, H(x) is464

the Heaviside function which ensures the result is nonnegative. Expanding Gk(t) and discarding465
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terms quadratic and higher in dt we find that Gk(t) = gk(t)dt, where466

gk(t) =
∑
n,k

H(gk→n(t)). (A.3)

Eq. (A.1) can be transformed into the differential equation,467

dP̄k

dt
= −gk(t)P̄k(t0, t). (A.4)

Integrating the previous equation to determine P̄k(t0, t + ∆t) for some finite time step ∆t, we find468

P̄k(t0, t + ∆t) = P̄k(t0, t) exp
(
−

∫ t+∆t

t
gk(t′)dt′

)
. (A.5)

We arrive at Eq. (16) by assuming gk(t) is constant in the interval from (t, t + ∆t) and rewriting in

terms of Pk(t0, t + ∆t),

Pk(t0, t + ∆t) = 1 − (1 − Pk(t0, t)) e−gk∆t (A.6a)

= Pk(t0, t) + (1 − Pk(t0, t)) (1 − e−gk∆t). (A.6b)

For improved numerical stability, our implementation uses the form in Eq. (A.6b) with the expm1469

routine in numpy59 to directly compute e−gk∆t − 1, which has greater numerical precision for small470

arguments. Similar functions are available in C and C++.471

We close this section by noting that Eq. (A.5), which is exact for any gk(t), exposes an alterna-472

tive strategy in which hops occur when473 ∫ thop

t0
gk(t′)dt′ = ln

(
1

1 − η

)
, (A.7)

rather than the condition used in this paper.474
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Exchange-Correlation Energies and Potentials Using Transformed Sparse Grids. J. Chem. Phys.569

2008, 128, 224103.570

42Qiu, J.; Bai, X.; Wang, L. Subspace Surface Hopping with Size-Independent Dynamics. J. Phys.571

Chem. Lett. 2019, 10, 637–644.572

43White, A. J.; Gorshkov, V. N.; Wang, R.; Tretiak, S.; Mozyrsky, D. Semiclassical Monte Carlo:573

A First Principles Approach to Non-Adiabatic Molecular Dynamics. J. Chem. Phys. 2014, 141,574

184101.575

44White, A. J.; Gorshkov, V. N.; Tretiak, S.; Mozyrsky, D. Non-Adiabatic Molecular Dynamics by576

Accelerated Semiclassical Monte Carlo. J. Chem. Phys. 2015, 143, 014115.577

26

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
24

37
2



45Kapral, R. Progress in the Theory of Mixed Quantum-Classical Dynamics. Annu. Rev. Phys.578

Chem. 2006, 57, 129–157.579

46Wu, Y.; Herman, M. F. A Justification for a Nonadiabatic Surface Hopping Herman-Kluk Semi-580

classical Initial Value Representation of the Time Evolution Operator. J. Chem. Phys. 2006, 125,581

154116.582

47mudslide 0.9, available at github.com/smparker/mudslide.583

48Martin, B. In Statistics for Physical Science; Martin, B., Ed.; Academic Press: Boston, 2012; pp584

83 – 104.585

49See Supplementary Material Document No. xxxxx for Even Sampling results integrated using586

the Simpson rule.587

50Odell, A.; Delin, A.; Johansson, B.; Bock, N.; Challacombe, M.; Niklasson, A. M. N. Higher-588

Order Symplectic Integration in Born–Oppenheimer Molecular Dynamics. J. Chem. Phys. 2009,589

131, 244106.590

51Luehr, N.; Markland, T. E.; Martı́nez, T. J. Multiple Time Step Integrators in Ab Initio Molecular591

Dynamics. J. Chem. Phys. 2014, 140, 084116.592

52Jain, A.; Alguire, E.; Subotnik, J. E. An Efficient, Augmented Surface Hopping Algorithm593

That Includes Decoherence for Use in Large-Scale Simulations. J. Chem. Theory Comput. 2016,594

acs.jctc.6b00673.595

53Smolyak, S. A. Quadrature and interpolation formulas for tensor products of certain classes of596

functions. Dokl Akad Nauk SSSR 1963, 148, 1042–1045.597

54Avila, G.; Carrington, T. Nonproduct Quadrature Grids for Solving the Vibrational Schrödinger598

Equation. J. Chem. Phys. 2009, 131, 174103.599
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