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Trajectory surface hopping simulations of photochemical reactions are a powerful and in-
creasingly important tool to unravel complex photochemical reactivity. Within surface
hopping, electronic transitions are mimicked by stochastic hops between electronic poten-
tial surfaces. Thus, statistical sampling is an inescapable component of trajectory-surface-
hopping-based nonadiabatic molecular dynamics methods. However, the standard sam-
pling strategy inhibits computational reproducibility, limits predictability, and results in
trajectories that are overly sensitive to numerical parameters like the time step. We de-
scribe an equivalent approach to sampling electronic transitions within fewest switches
surface hopping (FSSH) in which hops are decided in terms of the cumulative probability
(FSSH-c) as opposed to usual prescription, which is in terms of the instantaneous con-
ditional probability (FSSH-i). FSSH-c is statistically equivalent to FSSH-i and can be
implemented from trivial modifications to an existing surface hopping algorithm, but has
several key advantages: 1) a single trajectory is fully specified by just a handful of random
numbers, ii) all hopping decisions are independent of the time step such that convergence
behavior of individual trajectories can be explored, and iii) alternative integral-based sam-
pling schemes are enabled. In addition, we show that the conventional hopping probability
overestimates the hopping rate and propose a simple scaling correction as a fix. Finally,

we demonstrate these advantages numerically on model scattering problems.
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7 1.  INTRODUCTION

s Mixed quantum-classical nonadiabatic-nolecular dynamics'= (NAMD) has emerged as an ef-

o ficient and powerful tool to study processes involving electronic nonadiabaticity such as photo-

6 9

 chemical reactions®, reactive scattering on metal surfaces>®, or chemical 'féactions in cavities.””
11 Of the many approaches to NAMD reported previously, algorithms based on the trajectory sur-
12 face hopping concept are especially advantageous because the independent trajectory approxima-
13 tion makes them amenable to on-the-fly molecular dynamics simulations, in which the energies,
14 forces, and nonadiabatic couplings required to propagate trajectories are computed at each time
15 step using semiempirical or ab initio electronic structure methods. In particular, NAMD simula-

10-23

16 tions powered by time-dependent density-functional theory appear to strike an ideal balance

17 between computational cost and accuracy of the potential energy surfaces.

1e The Fewest Switches Surface Hopping (FSSH) approach to trajectory surface hopping is per-
1o haps the most widely used.?* Within FSSH, the nuclear degrees of freedom are treated classically
20 and the forces governing nuclear motion come from a single (usually adiabatic) potential energy
21 surface. Electronic transitions are included in the form of “hops” between potential energy sur-
22 faces. Intense interest in nonadiabatic dynamics in general and photochemistry in condensed sys-
23 tems in particular has led to-substantial progress® towards curing FSSH’s principal pathologies,

26-29

2« such as an inconsistent nuclear-eleetronic coherence” ", and an unphysical dependence on the

2 electronic representation’®3!. In addition, surface hopping algorithms that incorporate coupled tra-

26 jectories have been-recently introduced,?>*

as well as algorithms that target electronic coherences
22 on the same footing as electronic populations.®* Since the cost of an FSSH simulation is directly
2 proportional to the number of trajectories sampled, reducing the number of trajectories required
29 for a desired accuracy can have a significant impact on feasibility. The army ants algorithm, for
%0 instance, enables FSSH for rare events (e.g., probability of 107°) by artificially increasing low hop-
s1 ping probabilities and compensating by reweighting trajectories.®® Similarly, importance sampling
32 has been applied to the sampling of the initial conditions and shown to greatly reduce the number

s of independent initial conditions needed to be sampled to study the influence of temperature on

s+ photoabsorption cross sections.>

s As originally proposed, hops in FSSH are decided by computing an instantaneous hopping
s probability at each time step and comparing the hopping probability-t6 a random number.?* Within

s7 FSSH, the hopping probabilities are chosen such that on average, the proportion of trajectories on
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a given potential energy surface matches the electronic population of that state. Consequently, the
FSSH algorithm inherently requires sampling with independent trajectories. Of course, determin-
istic approaches to simulating surface hopping trajectories could be used instead. For example, the
ants algorithm for trajectory surface hopping—which predates FSSH—deterministically spawns
new trajectories at specified decision points and weights the new trajectories according to the in-

stantaneous-hopping probability.>>’

A similar approach is used in full multiple spawning (FMS),
a deterministic trajectory-based nonadiabatic molecular dynamics method spawns new trajectories
in regions of strong vibronic coupling.*® However, such spawning algorithms can become imprac-
tical for long simulations because the number of trajectories (and therefore the computational cost)
grows exponentially as a functiorrof simulation time.*> Stochastic approaches remain advanta-
geous because they let one control the computational cost without biasing the results. For example,
the recently proposed stochastic-selection approach to ab initie multiple spawning*® stochastically

discards trajectory basis functions during a simulation and thereby avoids the exponential growth

in the number of trajectories encountered in the deterministic ab initie-multiple spawning.?®

The stochastic nature of FSSH poses several obstacles to the reproducibility of simulations
performed using different implementations because direct comparisons are only possible between
implementations using the same classical integrator, electronic propagator, and sequence of ran-
dom numbers. We specifically refer here to computational reproducibility, which has been defined
as “obtaining consistent results using the same input data, computational methods, and conditions
of analysis.”*® FSSH results must be reproduced in a statistical sense, meaning many trajecto-
ries must be simulated and estimated properties of the distributions must be compared, which
can require thousands to millions of trajectories depending on the desired precision. By contrast,
with deterministic trajectory methods, independent implementations of the same method can of-
ten generate identical results down to machine precision on just a single trajectory. An illustrative
example is the question of whether a coin flip is fair; almost 10000 independent coin flips would
be required to have a 95% confidence that the bias in a given coin is less than 0.01. Thus, compu-
tational reproducibility can be enhanced by reducing or limiting the influence of stochasticity in a

computational method.

Similarly, numerically confirming convergence behavior of FSSH algorithms with respect to
time step is challenging because random numbers are drawn for each time step such that changing
the classical time step necessarily changes the hopping behavior. For this reason, convergence

with respect to time step is investigated rarely and always-ira statistical sense.*!"*?
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Here, we introduce an alternative criterion for deciding surface hops in FSSH based on the
cumulative hopping probability, i.e., the probability of any hop occurring since the start of the
simulation or the last hop. The cumulative viewpoint is inspired by the perturbative expansion
of semiclassical time-dependent molecular wavefunction in powers of the nonadiabatic coupling
by White et al****, in which the molecular wavefunction is expanded as an infinite series ordered
according to the number and times of all possible surface hops. Similar expressions were used by
others to expand the quantum-classical'Eiouville equation.***® However, the cumulative algorithm

we propose is nonperturbative.

In addition to significantly reducing the number random numbers needed to propagate a single
trajectory, using the cumulative hopping probability carries two more significant advantages. First,
it removes any dependence of surface hopping decisions on the time step so that convergence of
single trajectories with respect to the time step can be studied numerically. Second, the cumulative
point-of-view allows one to rewrite the results of a swarm of surface hopping trajectories as an

integral on the unit hypercube, which is especially amenable to numerical integration techniques.

This paper is organized[ap follows. In Sec. II we review the basic structure of FSSH so that
we can introduce the FSSH-i and FSSH-c algorithms. In addition, we sketch an even sampling
algorithm obtained from integrating the surface hopping hypercube with a quadrature. In Sec.
IIT we use a python implementation to show that FSSH-c yields identical dynamics as FSSH-i.
With this implementation, we numerically demonstrate that the convergence behavior of a single
trajectory can be studied. We then show that the even sampling algorithm significantly reduces
statistical noise in swarms of trajectories. Finally, We|conclude in Sec. IV by discussing several

avenues of ongoing research.

II. FEWEST SWITCHES SURFACE HOPPING (FSSH)

In mixed quantum-classical nonadiabatic molecular dynamics (NAMD) methods, the electronic
subsystem is treated quantum mechanically by expanding in a few-state electronic basis and the
nuclear subsystem fis' treated classically.?* We write the vector of nuclear positions as R(¢). The

electronic wavefunction is typically expanded in a nuclear-position-dependent basis as

¥ (®) = Z cn(DID,; R(1)) (1

n
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o7 where ¢,(t) are time-dependent expansion coefficients, and |®,; R(?)) is the n-th many-electron
s state which depends parametrically on the nuclear position. Alternatively, the electronic density

99 Operator

F() = D Tan()IPy; RO Dys RO) 2)

10 can also be used directly. The many-electron states are often chosen to be adiabatic states, i.e.,

101 states that satisfy
HRl®,;R) = E,(R)|®,; R), 3)

12 where Hy is the electronic Hamiltonian with nuclei fixed at positions R and E,(R) are potential
103 energy surfaces, but other choices, including diabatic states are also permissible.
w4  The expansion coefficients are propagated according to the time-dependent Schrodinger equa-

105 tion with

¢(t) = —i (H(@) — iW() e(t) = —iH(t)e(r) 4)

106 OI'

o(t) = —i(H, o ()], &)

where H = H(¢) — iW(?) and the elements of the matrix H (the electronic Hamiltonian) and W (the

nonadiabatic coupling) are

Hy (1) = (©p; RO | P R(2D)) (6)
0 .
Wan() = (s RO)| =[P R(@D)) = Ty - R. (7)
107 In the previous equation,
Tum = (P R(OIVR D3 R(2)) 8)

108 is the first-order derivative coupling vector and R is the nuclear velocity.

w9 The defining characteristics of all surface hopping methods are that i) at all times during a tra-
110 jectory the classical nuclei feel forces corresponding to a single potential energy surface referred
111 to as the active surface or active state and ii) electronic transitions are mimicked through stochas-
112 tic “hops” between different electronic states and hence different potential energy surfaces.?* In
13 particular, the FSSH variant is defined by choosing the rate of electronic transitions such that the
14 number of hops is minimized and for an ensemble of independent trajectories—referred to as a

115 swarm—the proportion of trajectories on any given state matches the electronic population of that

5
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16 state on average. In other words, the rate of electronic transitions is chosen such that

(N
&S el

: 9)

traj
117 where (Ny) is the average number of trajectories in a swarm of N, independent trajectories with
118 active state k.

19 After a hop has been initiated, regardless of the criterion used to decide on a hop, the kinetic
120 energy of the nuclei is adjusted to conserve total energy by scaling the nuclear momentum in the
121 direction of the derivative coupling, 7. If there is insufficient nuclear kinetic energy parallel to
122 the direction of the derivative coupling, then the hop is aborted. This is referred to as a frustrated
12 hop. In our implementation, no additional action is taken for a frustrated hop (i.e., the trajectory

124 continues with no momentum reversal).

125 A.  FSSH with instantaneous probabilities (FSSH-i)

126 According to the original prescription, hops are decided in each time interval from ¢ to ¢ + At

12z by computing the probability of hopping from the active state k to another state n,

Pron(t, 1+ A1) = g (DAL, (10)

128 Where
gk—m(t) = O-nk(t)l:lkn(t) - I:Ink(t)o-kn(t) (1T)

129 1s the instantaneous hopping probability and At is the time step. In practice, a uniform random
130 number n € U(0, 1) is drawn and a hop is initiated if < p;_,,. Thus, the total number of random
131 numbers drawn over the course of a trajectory is Ng.ps, a purely numerical parameter. We refer to
122 this scheme as FSSH with instantaneous probabilities (FSSH-i) and[if is depicted in Fig. 1.

1wa  We show if this paper that Eq. (10) overestimates the hopping rate when py_, (¢, £+ At) becomes
104 large. To[ilustrate why Eq. (10) overestimates the actual hopping probability, consider a time
135 interval (¢, + Ar) for which g;_,,,(1)At = % and assume g;_,, is constant in the time interval. This

136 straightforwardly leads to an overall branching probability
1
hop prob. € (t,t + At) — 5

137 1.€., half of all trajectories should hop in the time interval (¢, ¢ + Af). Now consider the branching

138 probability if two half steps were performed such that the hopping probability in each step becomes

6
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FSSH-i " |FSSH-c

gi-2 (103 a.u)

15 2 25 15 2 25

time (103 a.u.) time (103 a.u.)
FIG. 1. Instantaneous (left) and cumulative (right) hopping probabilities for a scattering simulation on
Tully’s simple avoided crossing model. In FSSH-i (left), hopping decisions are made based on integrated
instantaneous hopping probabilities such as the indicated region. In FSSH-c (right), hops are initiated when

the cumulative probability crosses a randomly chosen threshold signified by the horizontal dashed line.

139 J—P but each step has an independent hopping probability. The total probability of the trajectory
140 hopping in (¢, t + At) is thus

1 1\1
h b. A —+|1-—]-=0437
op prob. € (t,t + t)—>4+( 4)4 0.4375,

141 which is the probability of a hop in the first step plus the probability of no hop in the first step but a
12 hop in the second step. Hence, reducing the time step drastically reduces the branching probability
13 1n the (7,7 + Af) time interval, even though g,_,,(f) was assumed to be constant. We can generalize
144 this procedure by dividing the time interval into ¢ equal length segments, writing the probability
s of hopping in terms of the probability of no hop occurring in each time interval, (1 — gy_,,At/€)’,

146 and evaluating the limit as € goes to infinity,

LA\
hop prob. € (1,1 + At) » 1 - }im (1 _ 8k ; ) = ] — g8t

¢
1.7 where we have used the identity lim,_,, (1 + ’zf) E#‘. Note that Eq. (10) is the first-order result

1s of the previous equation. Therefore, we propose a simple scalifig lcorrection to Eq. (10),

Pron(ts 1+ A1) = s(g1ADg - n (DAL, (12)

149 where

1—e¢*
s(x) = ———, (13)
X
150
g =Y H(gion(®) (14)
n#k
7



AlP

Publishing

[

151 18 the instantaneous probability of any hop occurring to any state and H is the Heaviside function
152 that ensures that a hop to state n only occurs when the population of state »n is increasing. Inter-
1s3 estingly, this scale guarantees the hopping probabilities are less than 1, which is a requirement for
15« proper probabilities violated by Eq. (1().]In addition, Eq. (12) correctly gives the same overall
155 hopping probability whether using one step or two half steps. Using the same example as above

15s where g;At = %, the probability of hopping over two half steps is (1 — e™1/4) + e71/4(1 — e71/%) =

5
157 1 — e”!/2, which is identical to the single step hopping probability. For very small arguments,
158 §(x) ~ 1, and the scaled result is nefrly the same as Eq. (10). However, s(x) decreases rapidly as x
159 gets larger. For example, 5(0.02) ~ 0.99, 5(0.1034) = 0.95, and 5(0.215) ~ 0.9, meaning when Eq.
160 (10) indicates a 22% probability of hopping, s(x) reduces that by a significant 10%. In situations
et Where Eq. (10) guarantees a hop (i.e., the probability is equal to 1), s(x) reduces it to a 63% prob-
162 ability. To avoid a problematic division by (near) zero, we evaluate s(x) with a fourth-order Taylor

16s series when |x| < 1073, Trajectories using this scaled probability are referred to as FSSH-i with

1« Poisson probabilities because the probabilities follow a Poisson process and are denoted FSSH-ip.

s B. FSSH with caumulative probabilities (FSSH-c)

s Establishing the cumulative approach to FSSH starts with the recognition that p;_,, is formally
167 the conditional probability that there is a hop in the time window (¢, ¢ + At) given that there was
s N0 hop in the time window (%, t), where t; is a reference time such as the start of the simulation
169 Or the time of the most recent hop. The cumulative probability of a hop occurring since the
170 reference time, Pi(%y, ), 1s a more convenient quantity than p;_,, because p;_,, depends explicitly
171 on a numerical parameter, the time step, whereas Py(#y, t) depends only on a physical parameter.

172 To run surface hopping simulations based on the cumulative hopping probability, at the start of
173 a simulation we draw a uniform random number € U(0, 1) and hops occur at times when the

17+ cumulative probability crosses the random number,
Py(to, ") = . (15)
175 Pi(to, 1) is propagated in time according to
Pi(to, 1 + A1) = Pi(to, 1) + (1 — Pi(to, 1)) (1 — e840, (16)

176 See the Appendix for[a drijation of Eqgs. (16-14). We[erhphasize that Eq. (12) is a special case of
177 Eq. (16) when fy = t, providing furthfr évidence that Eq. (12) is the correct hopping probability to

8
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178 use. One random number is drawn and one cumulative probability is integrated irrespective of the
173 number of electronic states. When a hoyj is|indicated by Eq. (15), then the target state for hopping,
180 k', 1s chosen randomly according to the instantaneous hopping probabilities, g;_,(f). Note, for
181 two-state models, this step can be ignored. Next, the cumulative probability, Py, is reset to zero
12 and a new random number is drawn. The cumulative probabilities are reset also in the case of

183 frustrated hops.

1¢«  The total number of random numbers drawn over the course of a trajectory is thus min(2, Nyes—
185 1)(Nhops + 1), which is importantly independent of any purely numerical parameters. We refer to
18s this scheme as FSSH with cumulative probabilities (FSSH-c) and it is compared schematically to

187 FSSH-1 in Fig. 1.

188 C.  Even Sampling FSSH (ES-FSSH)

189 FSSH-c, introduced in the previous section, remains a fully stochastic algorithm to simulate
190 nonadiabatic dynamics through FSSH. In this section, we introduce a semistochastic algorithm for
19t FSSH, called even sampling FSSH (ES-FSSH) that follows directly from the FSSH-c framework.
192 In short, rather than randomly choosing a set of {1} (and thus the hopping times) for each trajectory,

193 @ swarm of trajectories with predetermined values of {} is initiated.

19« We motivate the discussion of ES-FSSH by writing an expectation value over a swarm of FSSH-

195 ¢ simulations with identical initial conditions, (A), as the integral expression

1 1
<A>=f dmf dp; ... xXA(pi1,p2,...), (17)
0 0

where A(py, p2, .. .) is the result obtained from a simulation with {n} = {p1, p,, .. .}. In this context,
FSSH-c can be seen as a Monte Carlo integration of Eq. (17). The infinitely nested integral above

can be tamed by defining reduced expectation operators,

1 1
Ak(Pl9---,Pk):f dpk+1f dpk+2...>(
0 0

A(p19'~"pk9pk+l5"‘) (18)



AlP

Publishing

[ 4nd rewriting Eq. (17) as
(A) = fAl(pl)dpl (19a)
- f f As(pr, po)dprdps (19b)

=fffAs(pl,pz,pg)dpldpzdps- (19¢)

In essence, ES-FSSH directly computes the expectation yalue by integrating (19) with an integra-

tion quadrature while integrating A; with a Monte Carlo algorithm, i.e.,

Ay~ > wiki(p) (20a)
~ > wiwAy(pi, p)) (20b)

i.j
~ Z wiw ;Wi As(pi, pj, Pi), (20¢)

i,j,k

196 Where {(w;, p;)} are the weights and nodes of an integration rule.

17 With identical initial conditions, any two trajectories will be identical up until the first hop at
19s Which they differ and thus running them as independent trajectories is computationally wasteful. In
199 our implementation, a single trajectory is launched and new trajectories are “spawned” whenever
200 @ hopping threshold is crossed. In this way, only the unique portion of trajectories are propagated.
201 For Nges > 2, One new trajectory is spawned for each potential target state and the newly spawned
202 trajectories are weighted by the instantaneous probability of hopping.

20s  ES-FSSH is conceptually similar to the accelerated semiclassical Monte Carlo (A-SCMC)
200 method*, in which for a given set of initial conditions the molecular wavefunction is expanded
205 in terms of an infinite integral over the number and times of hops. The wavefunction for a finite
20e number of hops was built by restarting previously run trajectories with additional hops. For ex-
207 ample, A-SCMC is initiated with a single trajectory with no hops, then a 1D spline is generated
208 for all the wavefunction parameters as a function of time, and finally new trajectories are sampled
200 from the 1D splined parameters. In contrast to A-SCMC, ES-FSSH does not require precomputing
210 any trajectories. For example, A-SCMC requires a complete zero-hop trajectory in order to sam-
211 ple single-hop trajectories, whereas ES-FSSH does not. Therefore, ES-FSSH is compatible with a
212 completely on-the-fly approach. Similarly, ES-FSSH resembles full multiple spawning (FMS)®8 in
213 that new trajectories are initiated as needed by spawning from an active trajectory. Both methods

214 reduce the computational cost by initiating a single trajectory and spawning new trajectories only

10
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215 as needed. They differ in that the collection of ES-FSSH trajectories approximates a swarm of in-
215 dependent trajectories whereas all FMS trajectories are used to expand a single nuclear-electronic
217 time-dependent wavefunction. In addition, with ES-FSSH the total number of trajectories is di-
218 rectly specified by the choice of the quadrature whereas the total number of trajectories is specified
219 indirectly in FMS by a spawning threshold that can lead to exponential growth in the number of

220 trajectories.

221 IlII.  RESULTS

22 All of the above algorithms were impletnented in mudslide*’, an open source python package
223 for nonadiabatic molecular dynamics. All results use mudslide version 0.9, which is released under
224 the MIT open source license. In mudslide, the classical nuclear equation of motion is propagated
225 using the velocity Verlet algorithm and the quantum electronic problem is propagated as a density
226 Matrix by constructing the time-evolution operator using a matrix exponential of H. All surface
227 hopping simulations were performed in the adiabatic representation.

228 For concreteness, we focus on results from two previously published models, Tully’s simple
220 avoided crossing model** and Prezhdo’s superexchange model.*® We argue that these two models
230 are sufficient, because our aim is to show that FSSH-c is identical to FSSH-1, not to survey the
21 performance of FSSH.

232 Tully’s simple avoided crossing. The simple avoided crossing model is a single-particle two-
233 state model designed to mimic a scattering event in which the particle has mass 2000 a.u. and the

234 diabatic Hamiltonian,

oo - [V V12(X)], on
Vor(x) Var(x)
is defined through
Vin(x) = sgn()A (1 - e, (22a)
Vo (x) = =Vi1(x), (22b)
Via(x) = Vi (x) = Ce™P%, (22¢)

255 where sgn(x) is the sign function that returns =1, A = 0.01, B = 1.6, C = 0.005, and D = 1.0, all
236 in atpmic units. See Fig. 2a for a depiction of the potential energy surfaces of the simple avoided

237 crossing model.

11
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FIG. 2. Nonadiabatic models used in this paper. a) Tully’s simple avoided crossing model.?* b) Prezhdo’s
super exchange model (note: each energy has been shifted down by 0.0075 a.u. to put it in the same scale).>"
28 Prezhdo’s superexchange. The superexchange model is a single-particle three-state model de-
239 signed to mimic mediated electronic processes (i.e., superexchange) in which the particle has mass

240 2000 a.u. and the diabatic Hamiltonian,

Vii(x) Via(x) 0
H(x) = | V51 (x) Vaa(x) Vas(x) |, (23)
0  Vanx) Vix)

is defined through

Vii(x) = 0, (24a)
Vao(x) = 24, (24b)
Vas(x) = A, (24c)
Via(x) = Vay (x) = Be ™7, (24d)
Vas(x) = Vap(x) = Ce P, (24e)

241 where A = 0.005, B = 0.001, C = 0.01, and D = 0.5, all in ato@ic units. See Fig. 2b for a

242 depiction of the potential energy surfaces of the simple avoided crossing model.

23 A.  FSSH-i and FSSH-c are equivalent

224 We start by demonstrating numerically that FSSH-i and FSSH-c reproduce the same dynamics.
25 However, the equivalence of FSSH-i and FSSH-c can only be established in the statistical sense,
246 since direct comparisons between trajectories is not possible, i.e., even with the same sequence of

2¢7 random numbers, FSSH-1 and FSSH-c trajectories will be distinct.

12
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FIG. 3. Transmission probabilities from scattering simulations using FSSH-c (red, open) and FSSH-i (blue,

124 1'30

filled) on a) Tully’s simple avoided crossing model~ and b) Prezhdo’s saper exchange model.”” Averaged

results computed from 10> independent trajectories.

2s  For each diabatic model and for both algorithms, we simulated the branching ratio of the scat-
249 tering event (i.e., the probability of ending the simulation on each electronic surface) as a function

250 of the initial momentum, ky. For each set of simulations, trajectories were initiated with initial

15 a.u.
ko

251 position xy = —10 a.u. and propagated with time step At = X a.u. Statistical properties were
252 computed using 10° trajectories for both FSS}B and FSSH-i. Fig. 3 shows that results simulated
253 using FSSH-1 and FSSH-c are visually indistinguishable.

25 Next, we quantify the equivalence of the two approaches by modeling the final result of each
255 trajectory as a Bernoulli process where the two possible outcomes are ending on the ground state
256 (with associated probability p) or on the excited state (with probability 1 — p). According to the
257 central limit theorem, with sufficient sampling, the probability distribution for the true branching

258 probability for a given set of initial conditions will follow a normal distribution,

1 1 p—p)z] -
a,,me"p[ o o)) 2

2ss where p is the observed mean branching probability, o, = /p(1 — p)/Nj is the standard error of

P(p) =

260 the mean,*® and N is the number of samples (i.e., independent trajectories). Applying this model
261 for results from FSSH-i and FSSH-c, we can estimate the probability that the true means computed
262 from FSSH-i and FSSH-c differ by less than a tolerance, r, as
1 Ap+r Ap—r
Er)=- [erf( ) - erf( )] , (26)
2 \/EO" \/50./

2ss Where erf(x) is the error function, Ap is the difference between the observed branching probabil-

264 ities for FSSH-i and FSSH-c, and o’ = \/O'ZSSH_i + O%SSH_C is the combined standard error of the

F
265 mean for FSSH-1 and FSSH-c.

13
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[ ]  Using Eq. (26), we find that branching probabilities computed with FSSH-i and FSSH-c differ

267 by less than 0.011 at 99% confidence for all inifihl momenta in Fig. 3. Consequently, we confirm
26s that FSSH-1 and FSSH-c produce statistically identical results. In other words, any swarm FSSH-c
260 trajectories will exhibit the exact same statistical properties (e.g., mean and variance) as a swarm
270 of FSSH-i trajectories, regardless of the model or number of trajectories in the swarms.

271 An important caveat is that FSSH-i and FSSH-c produce identical results for sufficiently small
272 time steps. For larger time steps, we found a small but statistically significant difference between
2z FSSH-i and FSSH-c when the hopping probability be¢dmes large. Figure 4a shows the results

2ra Of sets of 10° scattering simulations with the same parameters as in Fig. 3, except with a time

120 a.u.
ko

275 step of At = X a.u, which is 8 times larger tl@n that used in Fig. 3. We see that when the
276 initial momentum becomes large (and the probability of ending the simulation on the excited state
277 increases), there is a small but systematic difference between FSSH-c and FSSH-i, with FSSH-1
27s being more likely to end on the excited state. Since the only difference between the two algorithms
279 18 in the hopping decision, we conclude that the difference between FSSH-i and FSSH-c in Fig.
250 4 1s due to overly aggressive hopping in the FSSH-i algorithm. We verified by investigating the
251 convergence with respect to time step for a set of simulations with initial momentum &y = 30 a.u.
22 and averaged over 10° trajectories, and further comparing against FSSH-ip (FSSH-i with scaled
253 Poisson probabilities). The resultE]are shown in Fig. 4b, from which we see that FSSH-c and
25« FSSH-ip have similar convergence rates and that FSSH-i requires a significantly shorter time step
25 than FSSH-c for the same accuracy; FSSH-c and FSSH-ip are essentially converged by Ar = 4 a.u.
266 (1.e., the difference between the result at Az = 4 a.u. is within one standard deviation of the result
287 at At = 41‘; a.u.), whereas FSSH-1 requires a time step of Ar = % a.u. for the result to be within one

288 standard deviation of the result at At = }t a.u. For instance, the FSSH-i result with Az = 1 a.u. is

250 more than 4 standard deviations away from the result with At = % a.u.

200 B. FSSH-c uncovers convergence behavior

201 In this section, we demonstrate the key advantage of FSSH-c: it enables detailed investigations
22 Oof the convergence behavior of a single trajectory with respect to any other numerical parameter
203 such as the time step, integration method, or thresholds related to construction of the potential
204 energy surfaces. This is not possible using FSSH-i because changing the time step will neces-

205 sarily change the sequence of random numbers drawn for a given physical time interval. Hence,
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FIG. 4.  a) Transmission probabilities from scattering simulations on Tully’s simple avoided crossing
model?* using FSSH-c (red, open) and FSSH-i (blue, filled) with At = %;'“' X a.u, which is 8 times larger
than fifhe steps used in Fig. 3. b) Convergence of the probability of transmission on the ground state with
initial momentum ko = 30 a.u. as a function of time step. Averaged results computed from 10° independent
trajectories. Vertical bars represent the 95% confidence interval estimated from +1.96 \/m where

p is the observed ground state transmission probability and Ny = 10°.

206 convergence studies for single surface hopping trajectories have not been reported previously.

207 The convergence of the final position, momentum, energy, and density matrix as well as the
208 hopping times of a single trajectory with respect to time stepp Js examined in Fig. 5. The trajectory
290 uses Tully’s simple avoided crossing model, with initial position x, = —10 a.u., initial momentum
a0 ko = 10.0 a.u., and initial density matrix 0,,,(0) = ¢,00,. Trajectories were run for a total time
so1 of 4000 a.u. As reference, we compare to a trajectory with Az = 27% au. ~ 6.1 x 10~ a.u. In
a2 the studied trajectories, two hops are observed such that three random numbers are generated with

a0z values of {0.0291974618580323, 0.1800264840275190, 0.2221643371943814}.

s« From Fig. 5, we see that all final parameters converge monotonically and that a parts-per-
a0s thousand error is achieved for most final properties at At = 1 a.u. Notably, most properties con-
as verge much slower than expected analytically. For instance, the analytical global error in the
s07 position for the velocity Verlet algorithm scales as At?; however, a log-log fit of the results in Fig.

s0s 5a show a scaling of Af*®

. We attribute this slow convergence to the result of surface hops. The
aoe error in the hopping time is linear in the time step, because hops are only considered at whole
a0 time steps. Because the potential energy surface and momentum change suddenly upon surface
a11 hop, a linear error in the hopping time translates into a linear error in all other properties. We cor-
a1z roborated this hypothesis by studying the convergence of a trajectory with no hops and find that

ais the position, energy, momentum, and magnitudes of all elements of the density matrix converge

a1e quadratically or faster.
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FIG. 5. Convergence of a single surface hopping trajectory with respect to time step using FSSH-c. Relative
errors of the final a) position (x¢), momentum (ky), and total energy (E); b) time of first surface hop ()
and second surface hop (#1); ¢) diagonal elements of the electronic density matrix (coo(Zr) and o11(7y)); d)

off-diagonal elements of the electronic density matrix in polar form, oo (t5) = pe?.

sis C.  ES-FSSH reduces statistical error but biases the results

ais  In this section, we compare statistical convergence of FSSH-c with several closely related even
a7 sampling FSSH (ES-FSSH) methods. In all cases, we use the trapezoid fulg to integrate Eq. (19).
ais We also tested integration based on Simpson’s rule but found no systematic difference. See the
st supplementary material for results using Simpson’s rule integration.* We further introduce the
a0 ESn family of even sampling algorithms in which an n-dimensional quadrature is used to integrate
a1 A, in Eq. (19). We denote ESn(w,m) algorithm as the even sampling algorithm with w quadra-
a22 ture points in each dimension integrating A, and m Monte Carlo samples for each value of A,.
a3 ESn(w, m) thus uses mw" trajectories to approximate (A). For instance, ES1(10,5) approximates
a4 Eq. (19) by integrating A;(p) with a 10-point midpoint integration rule where each value of A;(p)
a5 1S computed by averaging across 5 independent trajectories.

s Figure 6 compares the expected means and 95% confidence intervals obtained from FSSH-c,
a7 ES1, ES2, and ES3 with different values of w and m for a scattering simulation using Tully’s
a2s simple avoided crossing with initial position xy = —10 a.u., initial momentum ky, = 10 a.u., and

a29 1nitial density matrix 0,,,(0) = d¢,00,- A time step of Ar = 1.0 a.u. was used. The expected mean
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FIG. 6. Comparison of statistical convergence of a) FSSH-c and even sampling algorithms b) ES1, c¢) ES2,
and d) ES3 on Tully’s simple avoided crossing model. Points signify the mean and vertical bars the 95% con-
fidence interval of a set of trajectories. For ES1, values of w = 10, 20, 50, 100, 200, 500, 1000 were used. For
ES2, values of w = 10, 20, 30, 40, 50 were used. For ES3, values of w = 3,4,5,7,8,9, 10, 15, 20, 25, 30, 35
were used. The horizontal dashed line shows the mean obtained by averaging 10° trajectories. Computa-

tional savings from reusing large portions of trajectories in ESn algorithms are not include in this plot.

s and confidence intervals for FSSH-c were obtained by bootstrap sampling on a collection of 10°
a1 independent trajectories, while the expected mean and confidence intervals for ESn were obtained

a2 by repeating the ESn simulation 100 times.

as  As expected from a Monte Carlo integration, FSSH-c is unbiased but relatively slow to con-
aas verge; the mean branching probability, 0.843, is numerically identical to the mean computed using
s3s 10° samples, but the range of the 95% confidence interval scales as N;%*°. The ESn algorithms,
ass on the other hand, effectively trade bias for faster statistical convergence. Furthermore, we find
a7 that increasing the value of m, i.e., the number of Monte Carlo samples, reduces the range of the
xs confidence interval but does not change the expected mean. For this reason, increased sampling
ase with m is only beneficial in the ES1 scheme, where the bias is small but the statistical noise is
a0 significant. For concreteness, consider the ES2 1ekults shown in Fig. 6¢. The branching probabil-
asr ity computed using ES2(10,1)—which spawns 100 trajectories in total—has a mean of 0.875 with
a2 @ 95% confidence interval 0.855-0.880 and root-mean-square-error (RSME) of 0.033, compared
as to a mean of 0.843 with a 95% confidence interval 0.770-0.910 and RMSE of 0.037 obtained
aa using FSSH-c with 100 trajectories. Therefore, a “typical” result using ES2(10,1) is closer to the
as converged result than a “typical” result computed with 100 FSSH-c trajectories, even though the

as average result from a large number of repeated simulations with ES2(10,1) will not converge to
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FIG. 7. Comparison of root-mean-square-error (RMSE) of FSSH-c and even sampling algorithms as a
function of a) the number of trajectories and b) the wall time required. The solid line shows the analytical

RMSE for independent FSSH-c trajectories and points show the observed numerical results for all methods

[] presented in Fig. 6. ESI uses m = 5, while ES2 and ES3 use m = 1 Monte Carlo samples. RMSE for

FSSH-c estimated from bootstrap sampling, and by 100 repeated simulations for ESn.

a7 the same limit as a large number of FSSH-c trajectories. No significant benefit is gained from the
us ES2(10,5) scheme, which reduces the RMSE only to 0.032. On the other hand, when going from
as ES1(50,1) to ES1(50,10), the RMSE is reduced from 0.040 to 0.014 while the computational time

as0 increases by a factor of 9.

st A more direct comparison of ES-FSSH with FSSHc is shown in Fig. 7 in which we compare
a2 the expected error in terms of the RMSE of a set of FSSH-c or ESn simulations as a function of the
asss number of trajectories or the wall time required for the simulations. We restrict our attention in Fig.
ase 7 to swarms with fewer than 500 trajectories to better reflect the most common use cases of FSSH
ass with ab initio potentials, and we use m = 5 for ES1 and m = 1 for ES2 and ES3. The RMSE results
sss are obtained from bootstrap sampling for FSSH-c and from 100 repeated simulations for ESn. In
ss7 Fig. 7a we see that ESn is competitive with FSSH-c on a per trajectory comparison, with some ESn
ass algorithms outperforming FSSH-c and a few widely underperforming. ES1 in particular, reduces
ase the number of trajectories needed for a given accuracy by factors of 1.7, 1.5, and 1.8 for w = 20,
a0 50, and 100, respectively. However, the comparison in terms of number of trajectories neglects the
a1 significant computational savings gained by only simulating the unique portions of trajectories.
a2 Fig. 7b shows the same results but as a function of the wall time required for the simulations.
sss Here, we see that even the worst performing ESn algorithms require approximately a quarter as
s« much wall time to achieve the same RMSE as FSSH-c, while top performing ESn algorithms
aes (especially ES3) achieve accuracies which could only be attained from tens of thousands of FSSH-

a6 C trajectories at a small fraction of the cost.
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FIG. 8. Comparison of ES2(10,1), ES2(30,1), and 100 FSSH-c trajectories on Tully’s simple avoided
crossing model. Reference results are taken from the 10° trajories shown in Fig. 3. a) Probability of
remaining on the ground electronic state and c) the error relative to converged results. b) Probability of

transitioning to the excited electronic state and d) the error relative to converged results.

7 To test whether the performance of ES-FSSH generalizes beyond the single momentum in-
ded vestigated in Fig. 6, we compute the branching probabilities as a function of initial momentum,
ase ko, using ES2(10,1), ES2(30,1), and 100 FSSH-c trajectories. The results @e collected in Fig. 8
s and compared to the reference resfilts obtained in Fig. 3. All other simulation parameters are the
s71 same for the rlts shown in Fig. 3, i.e., xop = —10 a.u., At = ﬁ-;,u X a.u. In Fig. 8, we see
a2 that all 3 methods closely track the reference results, but that 100 FSSH-c trajectories show the
a3 largest maximum error and are notably nonmonotonic, whereas both sets of ES2 results recover
s74 the monotonic behavior of the reference result. In addition, the ES2(30,1) results are closest to the

a7s reference results at all momenta.

ars We conclude this section by noting that electronic state branching probabilities for this model
a7 are likely a “worst case” model for the ESn because the branching probability is directly related to
a7s the number of hops and ESn treats the n-th hop differently than the n + 1 hop. For example, in ES2,
a7e the first two hops are included in the quadrature while the third is recovered through Monte Carlo
a0 sampling of A,. However, for many applications of FSSH in chemistry, the final electronic state is
ss1 known and FSSH is used to estimate not how many hops will occur but when and how they will
a2 occur. For example, in photodeactivation simulations, such as the deactivation of photoexcited

2

ses thymine,?! nearly every trajectory undergoes the same number and sequence of hops.
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s IV.  CONCLUSIONS

s Here, we introduce a cumulative approach to fewest switches surface hopping (FSSH-c) in
ass Which surface hops are initiated when the cumulative hopping probability crosses a random num-
a7 ber, instead of the conventional prescription in which hops occur when the instantaneous con-
ass ditional probability is greater than a random number (FSSH-1). Importantly, FSSH-c produces
ase statistically identical results as the conventional FSSH algorithm, and is thus an interchangeable
a0 replacement. As a byproduct, we show that FSSH-1 overestimates the hopping probability when
a1 the instantaneous probability becomes large and propose a simple scaling fix that improves con-
a2 vergence with respect to time step. FSSH-c shares the same algorithmic structure as FSSH-1, and
aes requires only a single additional floating point scalar variable to be retained between time steps—
s« the cumulative hopping probability. Existing FSSH-1 implementations can be converted to FSSH-c

aes implementations with trivial modification of existing routines.

s The key feature of FSSH-c is that surface hops are independent of numerical parameters such
a7 as the time step. By removing the dependence of surface hops on the time step, several new
ass possibilities are opened up, two of which are explored here. First, the convergence behavior of
ase single trajectories with respect to time step can be studied numerically. Our results indicate that
a0 the leading error in surface hopping simulations appears to scale linearly with time step, whereas a
s01 quadratic global error is expected analytically for the velocity Verlet method. The loss of accuracy
s02 1n the surface hopping simulations shown here likely result from the choice to only allow hops to
a0 occur at the discrete times dictated by time step. Therefore, we conclude that algorithms that allow
s0s surface hops to occur at a continuous time within a time step hold great promise for improving the

s0s numerical accuracy of surface hopping simulations.

ws  Second, FSSH-c exposes an alternative semistochastic integration technique for surface hop-
s07 ping simulations which accelerates convergence at the expense of bias, that we call even sampling
a8 FSSH (ES-FSSH). In particular, we introduced the ESn family of ES-FSSH algorithms which in-
a00 tegrate the first n hops in a swarm of simulations with an integration quadrature and all further
a0 hops with a Monte Carlo integration. For low numbers of trajectories (= 100), ESn appears advan-
a11 tageous because the bias introduced by the quadrature is significantly smaller than the statistical
a1z variance of the Monte Carlo approach. We emphasize that the example shown above is likely a
a1z worst-case scenario for ESn. In contrast to similar algorithms to approximate swarms of FSSH

s trajectories, ESn is fully compatible with-en-the-fly dynamics** and does not require manual se-
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lection of-coupling thresholds.®

Finally, FSSH-c has significant advantages over FSSH-i in terms of reproducibility and com-
parability of different implementations. For example, directly comparing two different FSSH-1
implementations requires using identical random number generators and time steps at the least,
meaning that algorithms implemented in different languages (with different random number li-
braries) may be impossible to directly compare. In this paper, we needed 10° trajectories to have a
99% confidence that branching ratios computed with FSSH-1 and FSSH-c agreed to within 0.011.
Because of the slow convergence of Monte Carlo integration, we estimate that approximately 107
trajectories would be required to tighten the window of agreement to 0.001. By contrast, two im-
plementations of FSSH-c could be compared to machine precision with just a single trajectory.
Thus, FSSH-c significantly reduces the effort required for computational reproduction. Further-
more, since hops only depend on physical characteristics of the trajectories, they should be much
less sensitive to details of the integration than in FSSH-i, meaning direct comparison is simple
even between methods that use different integration schemes, such as higher-order symplectic

integrators® or adaptive- or mukiiple-time stepping.’!

As our focus here is to show the myriad advantages of working in the cumulative framework,
we defer more detailed studies of the convergence and stability of propagation algorithms and of
the even sampling surface hopping algorithm to future publications. A plethora of extensions can
be envisioned. We briefly mention only a few. Surface hopping algorithms that allow surface
hops to occur on the interior of time steps-Have been proposed®? and can now be systematically
evaluated. Different integration quadratures in ES-FSSH could be investigated, including sparse

41,5354 and adaptive'integration schemes.>> In particular, we imagine that integration

Smolyak grids
quadratures for even sampling could be matched to the chemical process (e.g., excited-state decay
vs intersystem crossing) or specially designed to capture rare events without specifying in advance
additional nutncrical parameters.>>® Although we focused on the hopping probability in FSSH,
the same approach is applicable to any random process in related algorithms, such as the collapse

or reset probabilities inAugmented-FSSH?*2°7 or tunneling events in ‘elassical trajectories.”® All

of these directions are under investigation on our group.

FSSH-c has significant advantages over FSSH-i, no discernible disadvantages, and a trivial

implementation. Therefore, we recommend its adoption as default in all FSSH implementations.
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us SUPPLEMENTARY MATERIALS

us  See the supplementary materials for even sampling fewest switches surface hopping results

sa7 Integrated using Simpson’s rule.
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s Appendix: Propagation of Cumulative Probability

ss7 In this section, we derive the propagation of the cumulative probability of hopping out of state
ass k, Pi(to,t), which represents the total probability of a single hop occurring between #, and ¢. For
49 convenience, however, we work with the probability of finding no hops in the interval, Py(t, 1) =
w0 1 — Py(tg, t) for the duration of the derivation and rewrite the final result in terms of Py (y, ). Our

st implementation propagates Py (ty, t). We start by writing the infinitesimal change as
P(to, 1+ dr) = Pi(to, 1) (1 = G(1)) (A.1)

sz Where the term on the right side represents the probability of there being no hop in the interval

ae3 (to, 1) and no hop in (¢, t + dt), and

G =1- H (1 = H(gk—n(1))d1) (A2)

n#k

se4 18 the total probability of a hop to any state in the time interval. In the previous equation, H(x) is

a5 the Heaviside function which ensures the result is nonnegative. Expanding G,(¢) and discarding
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ses terms quadratic and higher in df we find that G(¢) = gi(¢)dt, where
gu(0) = > H(gion(1). (A3)
n#k

w7 Eq. (A.1) can be transformed into the differential equation,
dpP _
—= = ~gOPut.1). (A4)

ws Integrating the previous equation to determine Py(fo, t + Af) for some finite time step Az, we find

t+At
Pi(to, t + At) = Pi(ty, t) exp (— f gk(t’)dt') ) (A.5)

[ ]We arrive at Eq. (16) by assuming g,(7) is constant in the interval from (7, 7 + Ar) and rewriting in

terms of Py(ty, t + Ar),

Pi(to, 1+ At) = 1 — (1 = P(ty, 1)) e 84 (A.62)

= Pi(to, 1) + (1 — P(tg, 1)) (1 — 784, (A.6b)

w0 For improved numerical stability, our implementation {ises the form in Eq. (A.6b) with the expm1
aro routine in numpy>° to directly compute e84’ — 1, which has greater numerical precision for small
71 arguments. Similar functions are available in C and C++.

a2 We close this sectiof by noting that Eq. (A.5), which is exact for any g.(¢), exposes an alterna-

a73 tive strategy in which hops occur when

f g()dr’ = In (1 1 n)’ (A7)

fo

a74 rather than the condition used in this paper.
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